If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+9t=0
a = 5; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·5·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*5}=\frac{-18}{10} =-1+4/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*5}=\frac{0}{10} =0 $
| (12-y)y=15 | | 216=x×x×x | | 0=310+10.5t-4.9t^2 | | 3(x-9)-3=-5(-5x+8)-7x | | 3/x+8=29 | | (y-4+4y)/2=8 | | 5x+12=5x+20 | | 2+(x+8)= | | 2(x)+8= | | 2x-x=-4-1 | | -9(7.5-0.5y)+y=12 | | 3+n+7= | | 3n2–10n–13=0 | | 3.17x=x+1 | | a=2(3.14)(9)(8) | | 5x*5x+10=0 | | v2-3+2=0 | | u2-9u+14=0 | | J+5j=29 | | 3x4+4=x | | 5v+4-12v-10=-48 | | 3x=x+10+7 | | m/3+1=7/15 | | -3/8(5y+2)-5/16(-4y-5)=-67/16 | | 10x-x=18-x | | 2+8-z=24- | | 8x+2=2x+12 | | 9y-8(16y-14)=1302 | | 14-p=11 | | 8m-5=6m+10 | | L=2x+5+x+3 | | 4x+2¥=12 |